Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 164: 104039, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992878

RESUMO

The molecular mechanisms of amitraz and chlorfenapyr resistance remain only poorly understood for major agricultural pests and vectors of human diseases. This study focusses on a multi-resistant field strain of the crop pest Tetranychus urticae, which could be readily selected in the laboratory to high levels of amitraz and chlorfenapyr resistance. Toxicity experiments using tralopyril, the active toxophore of chlorfenapyr, suggested decreased activation as a likely mechanism underlying resistance. Starting from the same parental strain, transcriptome profiling revealed that a cluster of detoxifying genes was upregulated after amitraz selection, but unexpectedly downregulated after chlorfenapyr selection. Further functional validation associated the upregulation of CYP392A16 with amitraz metabolism and the downregulation of CYP392D8 with reduced activation of chlorfenapyr to tralopyril. Genetic mapping (QTL analysis by BSA) was conducted in an attempt to unravel the genetic mechanisms of expression variation and resistance. This revealed that chlorfenapyr resistance was associated with a single QTL, while 3 QTLs were uncovered for amitraz resistance. Together with the observed contrasting gene expression patterns, we argue that transcriptional regulators most likely underly the distinct expression profiles associated with resistance, but these await further functional validation.


Assuntos
Acaricidas , Piretrinas , Tetranychidae , Humanos , Animais , Piretrinas/farmacologia , Piretrinas/metabolismo , Toluidinas/farmacologia , Toluidinas/metabolismo , Tetranychidae/genética , Tetranychidae/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Acaricidas/farmacologia , Acaricidas/metabolismo
2.
Pestic Biochem Physiol ; 196: 105591, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945242

RESUMO

The two-spotted spider mite Tetranychus urticae is a polyphagous pest with an extraordinary ability to develop acaricide resistance. Here, we characterize the resistance mechanisms in a T. urticae population (VR-BE) collected from a Belgian tomato greenhouse, where the grower was unsuccessful in chemically controlling the mite population resulting in crop loss. Upon arrival in the laboratory, the VR-BE population was established both on bean and tomato plants as hosts. Toxicity bioassays on both populations confirmed that the population was highly multi-resistant, recording resistance to 12 out of 13 compounds tested from various mode of action groups. DNA sequencing revealed the presence of multiple target-site resistance mutations, but these could not explain resistance to all compounds. In addition, striking differences in toxicity for six acaricides were observed between the populations on bean and tomato. The highest difference was recorded for the complex II inhibitors cyenopyrafen and cyflumetofen, which were 4.4 and 3.3-fold less toxic for VR-BE mites on tomato versus bean. PBO synergism bioassays suggested increased P450 based detoxification contribute to the host-dependent toxicity. Given the involvement of increased detoxification, we subsequently determined genome-wide gene expression levels of VR-BE on both hosts, in comparison to a reference susceptible population, revealing overexpression of a large set of detoxification genes in VR-BE on both hosts compared to the reference. In addition, a number of mainly detoxification genes with higher expression in VR-BE on tomato compared to bean was identified, including several cytochrome P450s. Together, our work suggests that multi-resistant field populations can accumulate a striking number of target-site resistance mutations. We also show that the host plant can have a profound effect on the P450-associated resistance levels to cyenopyrafen and cyflumetofen.


Assuntos
Acaricidas , Tetranychidae , Animais , Acaricidas/farmacologia , Tetranychidae/genética , Pirazóis/farmacologia
3.
Commun Biol ; 6(1): 1160, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957415

RESUMO

Dicofol has been widely used to control phytophagous mites. Although dicofol is chemically related to DDT, its mode of action has remained elusive. Here, we mapped dicofol resistance in the spider mite Tetranychus urticae to two genomic regions. Each region harbored a glutamate-gated chloride channel (GluCl) gene that contained a mutation-G314D or G326E-known to confer resistance against the unrelated acaricide abamectin. Using electrophysiology assays we showed that dicofol and other diphenylcarbinol acaricides-bromopropylate and chlorobenzilate-induce persistent currents in Xenopus oocytes expressing wild-type T. urticae GluCl3 receptors and potentiate glutamate responses. In contrast, the G326E substitution abolished the agonistic activity of all three compounds. Assays with the wild-type Drosophila GluClα revealed that this receptor was unresponsive to dicofol. Homology modeling combined with ligand-docking confirmed the specificity of electrophysiology assays. Altogether, this work elucidates the mode of action of diphenylcarbinols as mite-specific agonists of GluCl.


Assuntos
Acaricidas , Acaricidas/farmacologia , Dicofol , Canais de Cloreto/genética , Mutação
4.
Nat Commun ; 14(1): 4990, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591878

RESUMO

The role, magnitude, and molecular nature of trans-driven expression variation underlying the upregulation of detoxification genes in pesticide resistant arthropod populations has remained enigmatic. In this study, we performed expression quantitative trait locus (eQTL) mapping (n = 458) between a pesticide resistant and a susceptible strain of the generalist herbivore and crop pest Tetranychus urticae. We found that a single trans eQTL hotspot controlled large differences in the expression of a subset of genes in different detoxification gene families, as well as other genes associated with host plant use. As established by additional genetic approaches including RNAi gene knockdown, a duplicated gene with a nuclear hormone receptor HR96-related ligand-binding domain was identified as causal for the expression differences between strains. The presence of a large family of HR96-related genes in T. urticae may enable modular control of detoxification and host plant use genes, facilitating this species' known and rapid evolution to diverse pesticides and host plants.


Assuntos
Artrópodes , Praguicidas , Animais , Herbivoria , Locos de Características Quantitativas/genética , Expressão Gênica
5.
Evol Appl ; 16(4): 863-879, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124092

RESUMO

Pesticide resistance relies on a myriad of mechanisms, ranging from single mutations to a complex and polygenic architecture, and it involves mechanisms such as target-site insensitivity, metabolic detoxification, or a combination of these, with either additive or synergistic effects. Several resistance mechanisms against abamectin, a macrocyclic lactone widely used in crop protection, have been reported in the cosmopolitan pest Tetranychus urticae. However, it has been shown that a single mechanism cannot account for the high levels of abamectin resistance found across different mite populations. Here, we used experimental evolution combined with bulked segregant analyses to map quantitative trait loci (QTL) associated with abamectin resistance in two genetically unrelated populations of T. urticae. In these two independent QTL mapping experiments, three and four QTLs were identified, of which three were shared between experiments. Shared QTLs contained genes encoding subunits of the glutamate-gated chloride channel (GluCl) and harboured previously reported mutations, including G314D in GluCl1 and G326E in GluCl3, but also novel resistance candidate loci, including DNA helicases and chemosensory receptors. Surprisingly, the fourth QTL, present only in only one of the experiments and thus unique for one resistant parental line, revealed a non-functional variant of GluCl2, suggesting gene knock-out as resistance mechanism. Our study uncovers the complex basis of abamectin resistance, and it highlights the intraspecific diversity of genetic mechanisms underlying resistance in a cosmopolitan pest.

6.
Mol Ecol ; 32(15): 4278-4297, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211626

RESUMO

Pesticide resistance represents a clear and trackable case of adaptive evolution with a strong societal impact. Understanding the factors associated with the evolution and spread of resistance is imperative to develop sustainable crop management strategies. The two-spotted spider mite Tetranychus urticae, a major crop pest with worldwide distribution and a polyphagous lifestyle, has evolved resistance to most classes of pesticides. Tetranychus urticae exists as either a green- or a red-coloured morph. However, the extent of genetic divergence and reproductive compatibility vary across populations of these colour morphs, complicating their taxonomic resolution at the species level. Here, we studied patterns of genetic differentiation and barriers to gene flow within and between morphs of T. urticae in order to understand the factors that influence the spread of resistance mutations across its populations. We derived multiple iso-female lines from Tetranychus populations collected from agricultural crops. We generated genomic and morphological data, characterized their bacterial communities and performed controlled crosses. Despite morphological similarities, we found large genomic differentiation between the morphs. This pattern was reflected in the incomplete, but strong postzygotic incompatibility in crosses between colour morphs, while crosses within morphs from different geographical locations were largely compatible. In addition, our results suggest recent/on-going gene flow between green-coloured T. urticae and T. turkestani. By screening the sequences of 10 resistance genes, we found evidence for multiple independent origins and for single evolutionary origins of target-site resistance mutations. Our results indicate that target-site mutations mostly evolve independently in populations on different geographical locations, and that these mutations can spread due to incomplete barriers to gene flow within and between populations.


Assuntos
Praguicidas , Tetranychidae , Feminino , Animais , Cor , Genoma , Mutação , Genômica , Tetranychidae/genética
7.
Pestic Biochem Physiol ; 192: 105411, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37105638

RESUMO

Acequinocyl and bifenazate are potent acaricides acting at the Qo site of complex III of the electron transport chain, but frequent applications of these acaricides have led to the development of resistance in spider mites. Target-site resistance caused by mutations in the conserved cd1- and ef-helices of the Qo pocket of cytochrome b has been elucidated as the main resistance mechanism. We therefore monitored Qo pocket mutations in European field populations of Tetranychus urticae and uncovered a new mutation, L258F. The role of this mutation was validated by revealing patterns of maternal inheritance and by the independently replicated introgression in an unrelated susceptible genetic background. However, the parental strain exhibited higher resistance levels than conferred by the mutation alone in isogenic lines, especially for acequinocyl, implying the involvement of strong additional resistance mechanisms. This was confirmed by revealing a polygenic inheritance pattern with classical genetic crosses and via synergism experiments. Therefore, a genome-wide expression analysis was conducted that identified a number of highly overexpressed detoxification genes, including many P450s. Functional expression revealed that the P450 CYP392A11 can metabolize bifenazate by hydroxylation of the ring structure. In conclusion, the novel cytochrome b target-site mutation L258F was uncovered in a recently collected field strain and its role in acequinocyl and bifenazate resistance was validated. However, the high level of resistance in this strain is most likely caused by a combination of target-site resistance and P450-based increased detoxification, potentially acting in synergism.


Assuntos
Acaricidas , Tetranychidae , Animais , Acaricidas/farmacologia , Citocromos b/genética , Citocromos b/metabolismo , Mutação
8.
Biology (Basel) ; 11(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36358331

RESUMO

Pyrethroids are widely applied insecticides in agriculture, but their frequent use has provoked many cases of resistance, in which mutations in the voltage-gated sodium channel (VGSC), the pyrethroid target-site, were shown to play a major role. However, for the spider mite Tetranychus urticae, it has also been shown that increased detoxification contributes to resistance against the pyrethroid bifenthrin. Here, we performed QTL-mapping to identify the genomic loci underlying bifenthrin resistance in T. urticae. Two loci on chromosome 1 were identified, with the VGSC gene being located near the second QTL and harboring the well-known L1024V mutation. In addition, the presence of an L925M mutation in the VGSC of a highly bifenthrin-resistant strain and its loss in its derived, susceptible, inbred line indicated the importance of target-site mutations in bifenthrin resistance. Further, RNAseq experiments revealed that genes encoding detoxification enzymes, including carboxyl/choline esterases (CCEs), cytochrome P450 monooxygenases and UDP-glycosyl transferases (UGTs), were overexpressed in resistant strains. Toxicity bioassays with bifenthrin (ester pyrethroid) and etofenprox (non-ester pyrethroid) also indicated a possible role for CCEs in bifenthrin resistance. A selection of CCEs and UGTs were therefore functionally expressed, and CCEinc18 was shown to metabolize bifenthrin, while teturUGT10 could glycosylate bifenthrin-alcohol. To conclude, our findings suggest that both target-site and metabolic mechanisms underlie bifenthrin resistance in T. urticae, and these might synergize high levels of resistance.

9.
PLoS Genet ; 18(11): e1010333, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36374836

RESUMO

The extreme adaptation potential of the generalist herbivore Tetranychus urticae (the two-spotted spider mite) to pesticides as well as diverse host plants has been associated with clade-specific gene expansions in known detoxifying enzyme families, and with extensive and rapid transcriptional responses. However, how this broad transcriptional potential is regulated remains largely unknown. Using a parental/F1 design in which four inbred strains were crossed to a common inbred strain, we assessed the genetic basis and inheritance of gene expression variation in T. urticae. Mirroring known phenotypic variation in the progenitor strains of the inbreds, we confirmed that the inbred strains we created were genetically distinct, varied markedly in pesticide resistance, and also captured variation in host plant fitness as is commonly observed in this species. By examining differences in gene expression between parents and allele-specific expression in F1s, we found that variation in RNA abundance was more often explained in trans as compared to cis, with the former associated with dominance in inheritance. Strikingly, in a gene ontology analysis, detoxification genes of the cytochrome P450 monooxygenase (CYP) family, as well as dioxygenases (DOGs) acquired from horizontal gene transfer from fungi, were specifically enriched at the extremes of trans-driven up- and downregulation. In particular, multiple CYPs and DOGs with broad substrate-specificities for pesticides or plant specialized compounds were exceptionally highly upregulated as a result of trans-regulatory variation, or in some cases synergism of cis and trans, in the most multi-pesticide resistant strains. Collectively, our findings highlight the potential importance of trans-driven expression variation in genes associated with xenobiotic metabolism and host plant use for rapid adaptation in T. urticae, and also suggests modular control of these genes, a regulatory architecture that might ameliorate negative pleiotropic effects.


Assuntos
Praguicidas , Tetranychidae , Animais , Tetranychidae/genética , Herbivoria , Transferência Genética Horizontal , Adaptação Fisiológica , Plantas
10.
Insect Biochem Mol Biol ; 145: 103757, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35301092

RESUMO

The organotin acaricide fenbutatin oxide (FBO) - an inhibitor of mitochondrial ATP-synthase - has been one of the most extensively used acaricides for the control of spider mites, and is still in use today. Resistance against FBO has evolved in many regions around the world but only few studies have investigated the molecular and genetic mechanisms of resistance to organotin acaricides. Here, we found that FBO resistance is polygenic in two genetically distant, highly resistant strains of the spider mite Tetranychus urticae, MAR-AB and MR-VL. To identify the loci underlying FBO resistance, two independent bulked segregant analysis (BSA) based QTL mapping experiments, BSA MAR-AB and BSA MR-VL, were performed. Two QTLs on chromosome 1 were associated with FBO resistance in each mapping experiment. At the second QTL of BSA MAR-AB, several cytochrome P450 monooxygenase (CYP) genes were located, including CYP392E4, CYP392E6 and CYP392E11, the latter being overexpressed in MAR-AB. Synergism tests further implied a role for CYPs in FBO resistance. Subunit c of mitochondrial ATP-synthase was located near the first QTL of both mapping experiments and harbored a unique V89A mutation enriched in the resistant parents and selected BSA populations. Marker-assisted introgression into a susceptible strain demonstrated a moderate but significant effect of the V89A mutation on toxicity of organotin acaricides. The impact of the mutation on organotin inhibition of ATP synthase was also functionally confirmed by ATPase assays on mitochondrial preparations. To conclude, our findings suggest that FBO resistance in the spider mite T. urticae is a complex interplay between CYP-mediated detoxification and target-site resistance.


Assuntos
Acaricidas , Tetranychidae , Acaricidas/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/genética , Compostos Orgânicos de Estanho , Tetranychidae/genética
11.
Curr Opin Insect Sci ; 43: 117-127, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33373700

RESUMO

Cytochrome P450 monooxygenases (P450s) play a key role in the detoxification of phytochemicals in arthropod herbivores. We present here an overview of recent progress in understanding the breadth and specificity of gene expression plasticity of P450s in response to phytochemicals. We discuss experimental setups and new findings in mechanisms of P450 regulation. Whole genome transcriptomic analysis of arthropod herbivores, either after direct administration of phytochemicals or after host plant shifts, allowed to integrate various levels of chemical complexity and lead to the unbiased identification of responsive P450 genes. However, despite progress in identification of inducible P450s, the link between induction and metabolism is still largely unexplored, and to what extent the overall response is biologically functional should be further investigated. In the near future, such studies will be more straightforward as forward and reverse genetic tools become more readily available.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Insetos/enzimologia , Ácaros/enzimologia , Animais , Sistema Enzimático do Citocromo P-450/genética , Insetos/genética , Ácaros/genética , Compostos Fitoquímicos/farmacologia , Defesa das Plantas contra Herbivoria , Transcriptoma
12.
Sci Rep ; 8(1): 9830, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959349

RESUMO

Enteric diseases in swine are often caused by different pathogens and thus metagenomics are a useful tool for diagnostics. The capacities of nanopore sequencing for viral diagnostics were investigated here. First, cell culture-grown porcine epidemic diarrhea virus and rotavirus A were pooled and sequenced on a MinION. Reads were already detected at 7 seconds after start of sequencing, resulting in high sequencing depths (19.2 to 103.5X) after 3 h. Next, diarrheic feces of a one-week-old piglet was analyzed. Almost all reads (99%) belonged to bacteriophages, which may have reshaped the piglet's microbiome. Contigs matched Bacteroides, Escherichia and Enterococcus phages. Moreover, porcine kobuvirus was discovered in the feces for the first time in Belgium. Suckling piglets shed kobuvirus from one week of age, but an association between peak of viral shedding (106.42-107.01 copies/swab) and diarrheic signs was not observed during a follow-up study. Retrospective analysis showed the widespread (n = 25, 56.8% positive) of genetically moderately related kobuviruses among Belgian diarrheic piglets. MinION enables rapid detection of enteric viruses. Such new methodologies will change diagnostics, but more extensive validations should be conducted. The true enteric pathogenicity of porcine kobuvirus should be questioned, while its subclinical importance cannot be excluded.


Assuntos
Diarreia/epidemiologia , Fezes/virologia , Kobuvirus/genética , Infecções por Picornaviridae/diagnóstico , Infecções por Picornaviridae/veterinária , RNA Viral/genética , Doenças dos Suínos/epidemiologia , Animais , Animais Recém-Nascidos , Bélgica/epidemiologia , Diarreia/virologia , Seguimentos , Kobuvirus/classificação , Kobuvirus/isolamento & purificação , Estudos Longitudinais , Nanoporos , Filogenia , Infecções por Picornaviridae/transmissão , Infecções por Picornaviridae/virologia , Estudos Retrospectivos , Análise de Sequência de DNA , Suínos , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...